PROGRAMME NAME/S: COMMON TO ALL ENGINEERING PROGRAMS SEMESTER : FIRST COURSE TITLE : APPLIED PHYSICS I COURSE CODE :

I. RATIONALE:

Applied Physics includes the study of dynamic and diverse topics all related to things that go on in the world around us. Aim of learning this is to give an understanding of this world both by observations and by prediction of the way in which objects will behave. Study of physics in first year is essential for engineering diploma students because it provides the fundamental principles that lie behind engineering and helps students in developing technical skills that are useful in upcoming semesters. There is requirement of offering learners sufficient conceptual background of Physics which would ultimately make them proficient to meet the challenges of engineering problems in upcoming time. Concrete utilization of physical principles and analysis in various fields of engineering and technology are given prominence in this course.

II. INDUSTRY/EMPLOYER EXPECTED OUTCOME:

This course is to be taught and implemented with the aim to develop in the student, the course outcomes (COs) leading to the attainment of following industry identified outcome expected from this course. Apply principles of physics to solve broad based relevant engineering problems.

III. COURSE LEVEL LEARNING OUTCOMES (COS):

Students will be able to achieve & demonstrate the following COs on completion of course based learning:

CO1- Understand basic mathematical tools, identities and functions required for Physics Problems

CO2- Use basic instruments to measure the physical quantities in various engineering problems.

CO3- Apply basics of mechanics to solve given engineering problems.

CO4- Understand how one material differs from another.

CO5- Apply basic principles of thermometry to solve engineering problems.

CO6- Apply principles of waves and oscillations to solve engineering problems.

IV. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT FOR APPLIED PHYSICS-I

Sr. No.	Theory Learning Outcomes (TLOs) aligned to COs.	Learning content mapped with Theory Learning Outcomes (TLOs) and COs.	Suggested Learning Pedagogies.	No Of Lecture	CO
1	TLO1.1: Solve problems based on algebraic identities $(x+y)^2, (x-y)^2, x^2-y^2$ TLO1.2: Expansion of $(1+x)^n, (1-x)^n$ TLO1.3: Apply Pythagoras theorem and	UNIT – I Basic Mathematics for Physics 1.1 Introduction about algebraic Identities $(x + y)^2, (x - y)^2, x^2 - y^2$ 1.2 Introduction about Binomial	Chalk and board Improved lecture, Tutorial Assignment, Demonstration	04	C01

	trigonometric ratios to explain relation between Hypotenuse, Base and perpendicular of right angle. TLO1.4: Solve basic integration and differentiations of single functions. TLO1.5: Explain and Draw Line graph.	theorem $(1+x)^n, (1-x)^n$ 1.3 Trigonometry: introduction about Pythagoras theorem and basic trigonometric ratios 1.4 Basic introduction about integration and differentiation 1.5 Line graph representation			
2	TLO2.1: Explain physical quantities and its types with examples. TLO2.2: Apply dimensional analysis to check correctness of equation and conversion of units in different systems. TLO2.3: Estimate the errors in the measurement for the given problem. TLO2.4: Explain the procedure of measurement of a given object by using vernier calipers, screw gauge and spherometer TLO2.5: Differentiate between scalar and vector quantities with examples.	 UNIT - II Units and Measurements 2.1 Physical quantities: Fundamental and derived quantities and their units, Systems of units: CGS, MKS and SI. 2.1 Dimensions, dimensional formula, Applications of dimensional analysis; principle of homogeneity of dimensions: correctness of physical equations, conversion of units in different systems of units. 2.1 Errors, types of errors: instrumental, systematic and random error, estimation of errors: absolute, relative and percentage error, significant figures. 2.1 Applications of Vernier calipers, Screwgauge, Spherometer 2.1 Vector analysis: Scalar and Vector quantities, Resolution and composition of vectors, Addition of vectors, Vector Multiplication. 	Chalk and board Improved lecture, Tutorial Assignment, Demonstration	06	CO2
3	TLO3.1: Explain force, Momentum, Impulse, friction. TLO3.2: Relate linear and angular velocity, linear and angular acceleration, Torque and Angular momentum. TLO3.3: Calculate work, power and energy for given problems.	 UNIT - III Basics of Mechanics 3.1 Force: Newton's laws of force with examples, Linear motion, Linear momentum and it's conservation, impulse, Law of parallelogram of forces. Friction: Types of friction, applications of friction, Lubricants (only general idea), applications of lubricants. 3.2 Circular motion: Angular 	Chalk and board Improved lecture, Tutorial Assignment, Demonstration	12	CO3

	TLO3.4: Explain work-	displacement, angular velocity			
	energy theorem.	and angular acceleration,			
		Relation between linear and			
		angular velocity, linear and			
		angular acceleration,			
		Centripetal force (only concept			
		and formula) and centrifugal			
		force with application such as			
		banking of roads, bending of			
		cyclists. Rotational Motion:			
		Torque, relationship between			
		Torque and Angular			
		momentum, Center of mass,			
		Moment of Inertia, radius of			
		gyration, Theorems of parallel			
		and perpendicular axes			
		(statements only). Application			
		of rotational motion in			
		transport vehicles, trains and			
		aeroplane turbine/engine.			
		3.3 Work: definition and its SI			
		units, Work done in moving an			
		object. Power: definition and			
		newer with numerical			
		power with numerical			
		and its Stupits: Kinotic operav			
		and liss of units. Kinetic energy			
		examples and their derivation			
		3 4 Work -Fnergy Theorem			
		Principle of conservation of			
		mechanical energy (for freely			
		falling bodies), transformation			
		of energy from one form to			
		another with its application.			
4	TLO4.1: Explain Hooke's	UNIT - IV Some Properties of	Chalk and board	08	CO4
	law and stress-strain	Matter	Improved lecture,		
	diagram.	4.1 Elasticity: definition of stress	Tutorial Assignment,		
	TLO4.2: Define pressure	and strain, different types of	Demonstration		
	and explain engineering	modulus of elasticity. stress –			
	applications of	strain diagram. Hooke's law			
	compressibility of fluids.	Engineering applications of			
	TLO4.3: How temperature	Flasticity			
	and impurity affects	4.2 Pressure: definition of Pressure			
	surface tension of any	its units atmospheric pressure			
	liquid.	Fortin's barometer gauge			
	TLO4.4: Define Stoke's law	pressure absolute pressure			
	and obtain formula for	pressure, absolute pressure.			
	terminal velocity.	Pascal s law (concept only).			

		Bernoulli's Theorem (concept			
		and examples only).			
		Compressibility of fluids and its			
		engineering applications.			
		4.3 Surface tension: concept. its			
		units, applications of surface			
		tension, effect of temperature			
		and impurity on surface			
		tension			
		A A Viscosity: Viscosity and			
		coefficient of viscosity: Stoke's			
		Law and terminal velocity			
		effect of tomporature on			
		viscosity			
	TIOE 1. Differentiate	VISCOSITY.	Chalk and board	10	COF
5	hotwoon boot and	UNIT - V Basic Thermodynamics		10	
	temperature and	5.1 Difference between fleat and	Tutorial Assignment		
	conversion between	temperature, Principles of	Demonstration		
	different scales of	measurement of temperature	Demonstration		
	temperatures.	and different scales of			
	TLO5.2: calculate	temperature and their			
	coefficient of linear,	relationship.			
	surface and cubical	5.2 Expansion of solids, liquids and			
	expansions and obtain	gases, coefficient of linear,			
	relation amongst them.	surface and cubical expansions			
	TLO5.3: Explain modes of	and relation amongst them.			
	transfer of heat.	5.3 Modes of transfer of heat			
		(Conduction, convection and			
		radiation with examples),			
		Coefficient of thermal			
		conductivity, Engineering			
		Application of conduction,			
		convection and radiations			
6	TLO6.1: Obtain	UNIT - VI Waves and oscillations	Chalk and board	08	CO6
	expression for	6.1 S.H.M.: Definition, expression	Improved lecture,		
	displacement, velocity,	for displacement, velocity,	Tutorial Assignment,		
	acceleration, time period,	acceleration, time period,	Demonstration		
	frequency and Energy in	frequency and Energy in S.H.M.			
	simple harmonic motion.	Time period of Simple			
	ILU6.2: Explain transverse	pendulum. S.H.M. waves.			
	waves and longitudinal	6.2 Iransverse waves and			
	waves.	iongitudinal waves, Sound			
	acoustics in improve	waves, irequency of sound,			
	communication and	amplitude of sound speed of			
	listening in auditorium and	sound			
	class rooms.	6 3 Acoustics of huildings –			

TLO6.4: Explain	reverberation, reverberation		
applications of ultrasonic	time, echo, coefficient of		
Waves, ultrasonic	absorption of sound, methods		
cleaning, and ultrasonic	to control reverberation time		
soldering.	and their applications.		
	6.4 Ultrasonic – Ultrasonic waves,		
	their engineering and medical		
	applications.		

V. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL/ TUTORIAL EXPERIENCES FOR APPLIED PHYSICS-I:

Sr.	Practical/Tutorial/Laboratory Learning	Laboratory Experiment/Practical	Number	Relevant
No.	Outcome (LLO)	Titles / Tutorial Titles	of hrs.	COs
1	LLO 1.1 Determine least count of measuring equipment.	To find the Least count of given different measuring equipment (eg. voltmeter, ammeter, stop watch, vernier calipers etc).	3	C01
2	LLO 2.1 Use Micrometer Screw gauge to: Measure dimensions of given objects. Measure the dimensions of objects of known dimensions. LLO 2.2 Estimate the errors in measurement.	To find the diameter of wire using a screw gauge.	2	CO2
3	LLO 3.1 Use vernier caliper to: Measure dimensions of given objects. Measure the dimensions of objects of known dimensions. LLO 3.2 Estimate the errors in measurement.	To find volume of solid cylinder and hollow cylinder using a vernier caliper.	2	CO2
4	LLO 4.1 Use spherometer to: Measure radius of curvature of given object. LLO 4.2 Estimate the errors in measurement.	To determine the radius of curvature using a Spherometer.	2	CO2
5	LLO 5.1 Verify law of parallelogram law of forces.	To verify parallelogram law of forces.	2	CO3
6	LLO 6.1 Determine the coefficient of friction on horizontal plane.	To determine the coefficient of friction on horizontal plane.	2	CO3
7	LLO 7.1 Determine force Constant of spring using Hooke's Law.	To determine force Constant of spring using Hooke's Law.	2	CO4
8	LLO 8.1 Determine Young's Modulus by Searle's apparatus.	To determine the Young's Modulus by Searle's apparatus.	2	CO4
9	LLO 9.1 By Stoke's method determine viscosity of given liquid	To determine the viscosity of given liquid by Stoke's method	2	CO4
10	LLO 10.1 Use Fortin's barometer to find atmospheric pressure.	Determine the atmospheric pressure at a place using Fortin's barometer.	2	CO4
11	LLO 11.1 Determine Coefficient of	Determination of Coefficient of	2	CO5

	thermal conductivity using Searle's	thermal conductivity using Searle's				
	apparatus	apparatus				
	apparatus.	apparatus.				
12	LLO 12.1 Determine thermal conductivity	Determine the thermal conductivity	2	CO5		
	of bad Conductor by Lee's disc method.	of a nonmetallic solid (bad				
		Conductor) by Lee's disc method.				
13	LLO 13.1 Find the time period of a simple	To find the time period of a simple	3	CO5		
	pendulum.	pendulum and determine the length				
	LLO 13.2 Determine the length of	of second's pendulum.				
	second's pendulum.					
14	LLO 14.1 Determine frequency of A.C.	Determine the frequency of A.C.	2	CO6		
	mains or of an electric vibrator by	mains or of an electric vibrator by				
	Melde's experiment.	Melde's experiment.				
15	LLO 15.2 Study relation between	Study the relation between	2	CO6		
	frequency and length of a given wire	frequency and length of a given wire				
	under constant tension.	under constant tension using				
		sonometer.				
Note:	Note: Out of above suggestive LLOs -					
Minimu	um 70% of the above listed lab experiments	are to be performed.				
Judicious mix of LLOs is to be performed to achieve desired outcomes.						

VI. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING):

MICRO PROJECT:

- Prepare prototype vernier caliper of desired least count using card sheet.
- Collect information by library survey regarding engineering material used in various industries.
- Prepare model to show conservation of linear momentum.
- Prepare model to show Conservation of angular momentum.
- Prepare Charts on given topics.
- Prepare Charts for practical.
- Prepare model to demonstrate expansion of solids, liquids and gases.
- Prepare model to demonstrate Hook's law.
- Prepare model to demonstrate Bernoulli's Theorem.
- Prepare model to demonstrate Surface tension.
- Prepare model to demonstrate Viscosity.
- Prepare model on how to control friction.

ASSIGNMENTS:

- Prepare a chart to summarize basic Integration and differentiation formulas.
- Prepare a chart to summarize units and measurements.
- Write Work-energy theorem.
- Calculate power for given problems.
- Determine the rigidity modulus of the suspension wire using torsion pendulum. (Virtual Lab)

- Determine *g*, the acceleration of gravity at a particular location. (Virtual Lab)
- Convert the units of a given physical quantity from one system of units to another.
- Measure room temperature of hot baths / bodies by using mercury thermometer and convert it into different scales.
- Find Viscosity of Liquid. (Virtual Lab)

VII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED:

Sr. No.	Equipment/Instrument/Tools Name with Broad Specifications	Relevant LLO Number
1	Screw Gauge: Range :0-25 mm, Resolution: 0.01mm	1,2,8
2	Vernier Calipers: Range: 0-150mm, Resolution: 0.1mm	1,3
3	Spherometer: Least Count 0.01mm	1,4
4	Stop Watch: Mechanical	1,13
5	Ammeter: (0-3A)	1
6	Voltmeter: (0-3V)	1
7	Solid Cylinder and Hollow Cylinder	3
8	Watch Glass	4
9	Gravesand's Apparatus /Parallelogram Apparatus with three slotted weight and two pulleys, stand type portable.	5
10	Mirror Strip	5
11	Coefficient of Friction apparatus complete setup with weight box.	6
12	Metallic bob	2,3,13
13	Hooke's law apparatus.	7
14	Searle's Apparatus with slotted weight and wire	8
15	Viscosity Apparatus for Stokes's Method.	9
16	Fortin's barometer	10
17	Searle's apparatus for thermal conductivity	11
18	Lee's disc with stand.	12
19	Melde's electric vibrator.	14
20	Sonometer	15
21	Sensitive Thermometer	14,15
22	Steam Boiler	14,15

VIII. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table):

Sr. No.	Unit	Unit Title	AlignedCOs	Learning Hours (L+T)	Weightage%
1	_	Basic of Mathematics for Physics	CO1	04	9
2	II	Units and Measurements	CO2	06	13
3	Ш	Basics of Mechanics	CO3	12	25
4	IV	Some properties of matter	CO4	08	16
5	V	Basic Thermodynamics	CO5	10	21
6	VI	Waves and Oscillations	CO6	08	16
		Grand Total	48	100	

IX. SUGGESTED COS - POS MATRIX FORM:

Applied Physics - I							
Course				Programme	Outcomes (POs)		
Outcome	PO-1 Basic	PO-2	PO-3	PO-4	PO-5	PO-6 Project	PO-7
s(COs)	and	Problem	Design/	Engineering	Engineering	Management	Life Long
	Discipline	Analysis	Developmen	Tools	Practices for		Learning
	Specific		tof Solutions		Society,		
	Knowledge				Sustainabilityand		
					Environment		
CO1	3	3	2	1	1	1	1
CO2	3	1	2	3	1	1	1
CO3	3	2	2	1	1		1
CO4	3	2	2	2	1	1	1
CO5	3	1	2	2	1		1
CO6	3	1	1	1	1	1	1
Legends:	Legends: - High:03, Medium:02, Low:01						

X. SUGGESTED LEARNING MATERIALS / BOOKS:

Sr. No.	Author	Title	Publisher with ISBN Number
	J.V Narlikar, A. W Joshi, A. K.	Physics Textbook Part I - Class XI	National Council of Education Research
1	Ghatak et al		and Training, ISBN: 8174505083
	J.V Narlikar, A. W Joshi, A.	Physics Textbook Part II - Class XI	National Council of Education Research
2	K. Ghatak et al		and Training, ISBN: 8174505660
	J.V Narlikar, A. W Joshi, A.	Physics Textbook Part I - Class XII	National Council of Education Research
3	K. Ghatak et al		and Training, ISBN: 8174506314
	J.V Narlikar, A. W Joshi, A.	Physics Textbook Part II - Class	National Council of Education Research
4	K. Ghatak et al	XII	and Training, ISBN: 8174506713
5	David Halliday, Robert	Fundamentals of Physics	John Wiley & sons, Hoboken,2014 ISBN:
	Resnik and Jearl Walker		812650823X
6	B. N. Ivanov	Fundamentals of Physics	CBS
7	Yakov Perelman	Physics at every step	Prodinnova, ISBN: 2917260564
8	H. C. Verma	Concepts of physics	Bharti Bhawan, ISBN: 8177091875

XI.LEARNING WEBSITES & PORTALS:

S.N.	Link / Portal	Description
1	www.sciencejoywagon.com/physicszone	Electricity, Magnetism and Semiconductors, basic of
		fiber optics
2	https://phet.colorado.edu	Electricity, Magnetism and Semiconductors,
		Thermometry and basic of fiber optics
3	www.physicsclassroom.com	Concepts of basic physics
4	EDUPOINT	Concepts of basic physics

5	NPTEL	Concepts of basic physics
6	SWAYAM	Concepts of basic physics
7	Vlab (Virtual Lab)	To perform practical virtually.